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Abstract

Except for very particular cases, most solutions of Einstein's equations are not known in closed form, so 

numerical  simulations  are  required  which  in  turn  require  employing  high performance  computing  to 

accurately represent relevant systems. The research of the world wide community in this field is geared 

into  implementing  numerical  simulations.  The  Adaptive  Mesh  Refinement  (AMR)  method  and  the 

parallel coding with sharing information using MPI (Message Passing Information) routines has become a 

very efficient technique for realizing these simulations [1].  In the present work, it's developed a code 

which shares information on a globally closed and periodic discretization grid of a three dimensional 

sphere.  The outgoing information coming only from the boundary of the numerical grid of each parallel 

process has to be shared with the other  processes at  each time step during the evolution.   For more 

advanced instances of the research in Numerical Relativity, it  comes necessary to incorporate several 

essentially  different  phenomenas  coexisting in  a  single  numerical  evolution,  for  example  gravity  and 

magnetohydrodynamics.  Those  phenomenas  generally  evolve  at  different  temporal  scales  and  are 

localized at different spacial domains. The optimization of the computation for the most relevant part of 

those phenomenas is performed using the AMR method. It begins by defining a coarse mesh that covers 

the entire computational domain. Refined grids of higher resolution are added to regions of the domain 

where additional resolution is required. This process of adding finer and finer meshes continues to some 

prespecified level of accuracy. In addition, this hierarchical structure is dynamic so that the algorithms are 

capable of adapting themselves to arbitrary problems by automatically refining and moving meshes to 

resolve small scale features as they develop and evolve. The result is a tremendous savings of computer 

memory and a reduction in execution time over large fine grid simulations. 
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Parallel computation with sharing information process on the 3-sphere: 

  The global process is composed by eight copies of independent parallel processes, where each one performs 

the computations on its own specific three dimensional grid. The eight grids of the eight parallel processes 

actually form the three dimensional sphere as it's showed in the next figure. Each grid is a cube, a three 

dimensional array of (N+1)³ points. The global process only needs to share the information between points at 

the faces of those cubes. There are 6(N+1)² boundary points per grid and each grid shares information only 

with six neighbor grids. 

Figure 1. Discretization of a three dimensional sphere.

  The computation inside each grid is basically implemented by finite differences method with fourth order 

accurate derivative operators, where the global time evolution is carried out by a fourth order Runge-Kutta 

scheme. In that way this code can solve any time dependent problem in physics which is reduced to a system 
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of  first  order  partial  differential  equations  on  geometry  of  the  three  dimensional  sphere.  The  main 

computational cost actually relies in the fact that large amounts of memory are necessary in order to store 

four temporal steps data values for each variable in the grid, the available memory for each process fixes the 

maximum grid resolution. Furthermore, to have a consistent, stable and converging finite differences method 

scheme a  penalty  method [2]  is  applied to  the  incoming modes  of  the  equations,  namely the incoming 

information from the neighbor cubes.  Also one needs to have smaller temporal step evolution with higher 

grid resolution, so if the resolution is doubled then the total number of temporal steps must also be doubled 

increasing even more the whole computing time. As an example of a simple time dependent problem which 

can be solved with this technique, the next figure shows two instants obtained from the simulation, using the 

described code, of an initial pulse of a massless Klein-Gordon scalar field on a fixed background metric with 

the  S³ topology. 

 

 

Figure 2. Sequence of two instants of the evolution of a scalar field on the 3-sphere.
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    Each grid has a resolution of N=40, and the first order PDE system in this case is composed of five 

variables, namely the scalar field and its temporal and spacial derivatives. The initial data pulse has compact 

support inside a small area inside one specific grid. It can be observed that the scalar field leaves this initial 

grid which is placed in the center and propagates into its neighbor during the evolution.  At each time step of 

the evolution the MPI routine send and receive the information of the outgoing and incoming physical modes 

of propagation through each interfaces. Although all the grids are identical, each one has its own specific 

coordinate  system,  so  the  derivatives  of  the  scalar  field  in  each  process  are  calculated  in  terms  of  its 

respective coordinate system. Once each process receives that information from the neighbor grids, it must 

be decoded by means of a predefined coordinate transformation depending on which grid these derivatives 

are coming from.

Adaptive Mesh Refinement in Magnetohydrodynamics:

  We use the HAD infrastructure, a modular code for solving hyperbolic and elliptic differential equations 

with distributed parallel AMR [3]. HAD uses Berger–Oliger (B&O) [4] style AMR with sub-cycling in time. 

Refinement  criteria  may  be  problem specific,  or  a  shadow hierarchy  allows  one  to  easily  estimate  the 

truncation error dynamically for use in specifying refinement criteria. We use hyperbolic divergence cleaning 

to control the ∇⋅B=0  constraint for the magnetic field. Finally, we use third-order Runge–Kutta scheme to 

integrate the equations. The code is written in Fortran for simplicity and easy of debugging. Grids contain 

fields and associated other data. Levels consist of all fields at a given resolution. Hence, level zero consists 

of just the coarse grid (or all the grids into which the coarse grid may be domain decomposed for distribution 

to all the processors), while level one consists of all children of that coarse grid.

The code is written to allow for various projects. The code is distributed using Message Passing Interface 

(MPI) in such a way that grids are sent to the various processors.

Shadow Hierarchy:

A key ingredient to the B&O algorithm is to know where a refinement is needed. This is accomplished by 

determining an estimate of the error in the solution for each location and time. The simplest solution is by 

using some function of the evolved fields, such as a density or gradient. B&O specify another way, called 

truncation error estimation (TRE). To get an error estimation of the truncation error, one takes a two time 

steps on a given grid and compares the obtained values with values found by taking a single step on a grid 
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with half the resolution. This difference is indicative of the truncation error. 

Parallelization: Multiple Instruction, Multiple Data (MIMD):

 Multiple Instruction: every processor may be executing a different instruction stream.

 Multiple Data: every processor may be working with a different data stream.

 Execution can be synchronous or asynchronous, deterministic or non-deterministic.
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