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Abstract

In this work we show how GPGPU, or General Processing on the Graphical Pro-

cessor Unit, can be useful on scientific computing. In particular, we applied this

technology to electronic structure calculations performed at the density functional

theory (DFT) level. We started from an existing chemistry simulation program,

and selectively replaced portions of it with GPU-oriented code. In energy calcula-

tions over fixed geometries, we achieved speedups of up to approximately five

times, compared to the CPU version.

1 Introduction

Modern video cards have dedicated processors (Graphical Processing Units or

GPU s) that perform the heavy computations necessary to display 2D and 3D objects on

the screen. These computations are generally specific operations that are applied to a

big set of data (pixels, 3D vertexes, etc.). Because of this, GPU’s are specially designed

as SIMD (Single Instruction Multiple Data) processors, where parallelism is used to sig-

nificantly improve performance.

Current GPUs now have the ability to execute user-written general purpose code.

This is specially useful in simulation programs, where arithmetic intensity is generally

high. In cases where there is high data-parallelism, significant speedups could be

achieved.
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Also, these video cards have the advantage of costing considerably less than a group

of CPUs (in a HPC cluster or multicore computer) that scale as high a single GPU. The

processors and memory behind these pieces of hardware have evolved with time and are

now incredibly fast.

In this case, we have applied this technology to chemistry-simulation computations,

as others previously did [1][2][3][4]. Specifically, we took an existing program [5] and

implemented its heavier parts of some computations (in terms of computational cost) for

GPU.

2 The GPU

While multiple options regarding graphical board models and programming environ-

ments exist, we have chosen a nVidia GPU (GeForce 8800 GTX, with 768MB of

RAM) and the programming environment called CUDA[6], developed by the same com-

pany. Therefore, the following section will refer to this particular combination of hard-

ware and software. In any case, similarities exist with the other available choices.

The reference CPU hardware used for comparisons is an AMD Athlon 64 X2

3600+, dual-core processor.

To generate the original program, the Intel Fortran compiler was used (with flags

-ip -O3 to enhance performance, and -mp1 to improve precision). In the case of CUDA

code, the -O3 optimization flag was used.

2.1 Architecture

In the case of the 8x-series of nVidia’s GPUs, the general architecture is comprised

of a series of multiprocessors or stream-processors , according to the manufacturer, that

share access to a global memory segment (this is actually the graphical board’s device

memory). Each multiprocessor also has its own shared memory, which can be used to

intercommunicate the actual processors contained in it. The shared memory can be as

fast as accessing a processor register, while a global memory access involves hundreds of

cycles. Memory accesses in general are not cached, unless specific memory segments (the

constant and the so-called texture segments) are used.

An important issue with this model (which was present in all models to the time of

writing) is that it supports single-precision floating-point operations only. In the partic-

ular application we used, precision is a crucial issue.
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2.2 Programming Model

While there were originally low-level approaches to programming on GPUs, currently

we have alternative options. As mentioned previously, we used CUDA (Compute Unified

Device Architecture). This programming environment consists of a C -based language

with some extensions that allows us to define specific methods or functions as GPU code

(which are called kernels in general). The CUDA compiler will then generate GPU

assembly out of these portions, together with interface code between regular C and

CUDA.

The programming model is similar to a multithreaded application (it generally con-

sists of a pipe-and-filter layout). A group of threads are spawned and the GPU method

or kernel (written by the CUDA user) is launched. Each thread will execute the kernel

code on its own. Generally, the kernel is written in such way that threads cooperate by

exchanging intermediate results (using each of the multiprocessor’s shared memory).

This group of threads needs to be defined as a bi-dimensional grid, subdivided in bi-

dimensional blocks (see figure 1). Each block of threads can intercommunicate through a

multiprocessor’s shared memory, as blocks are guaranteed to run on a single multipro-

cessor (not all threads in it will be run concurrently, but in batches called warps). To

synchronize access to this shared medium, a barrier method is used. This holds all

threads until they reach the barrier , after which thread execution continues independent

of each other again. This type of synchronization is only possible between threads of the

same block , and not between threads of different blocks (what we could call, global syn-

chronization).

Grid
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Block
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Block
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Block
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Thread
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Figure 1. Grouping of threads in a grid of blocks
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3 A Concrete Application

The code developed consists of a reimplementation of specific parts of a chemistry-

simulation program, based on the quantum mechanics approach called Density Func-

tional Theory (DFT)[7]. The goal of this calculation is to compute the electronic struc-

ture and energetics of a system consisting of a set of nuclei and a group of electrons.

The energy is calculated as:

E[ρ] =Ts[ρ] +Vne[ρ] +
1
2

∫ ∫
ρ(r1K )ρ(r2K )

R12
dr1K dr2K +Exc[ρ] (1)

where Ts is the kinetic energy, Vne is the electronic-nuclei interaction, the third term

represents the classical electron-electron interaction (ρ(rK ) corresponds to the electronic

density at point rK ) and the fourth is the so-called exchange-correlation energy. The

major computational cost resides in this last term, and it’s computed as follows:

Exc =

∮
ρ(rK )εxc(ρ(rK )) drK , rK ∈R3 (2)

where εxc is the local exchange-correlation energy functional of the density. This is the

simplest method of approximation because it uses exclusively the local density. Because

of this, this method is referred to as Local Density Approach or LDA[8].

The previous integral is implemented as an approximation over a grid[9] G ⊆ R3 of

points pK . This grid is actually a sum of various others that result from centering and

scaling a grid g ⊆ R3, over each atom of the system. This grid g consists of a set of

points distributed in concentric shells around the origin. The approximation is then:

Exc@ ∑
pK ∈G

ρ(pK )εxc(ρ(pK )) (3)

where

ρ(pK ) =
∑

i

|ψi (pK )|2, ∀pK ∈G (4)

and the functions ψi (referred to as orbitals) are defined as:

ψi(x, y, z) =
∑n

k=1

ci
kχk(x, y, z) (5)

over the basis functions χk:

χk(x, y, z) = (x− x0)
nx

k

(y− y0)
ny

k

(z − z0)
nz

k
∑

j

dj
ke−αjsK (6)

sK =(x− x0)
2 +(y− y0)

2 +(z− z0)
2 (7)
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where ci
k and dj

k are constants.

3.1 The original implementation (serial version)

The approximation of the energy is achieved by using an iterative algorithm, that

seeks to minimize the total energy (to which the exchange-correlation energy con-

tributes) of the input system. At each step, for each point of the grid G, ρ is first calcu-

lated. Then, this value is used to update the Fock-Matrix , which is necessary for the rest

of the simulation. This matrix depends on the basis functions and the density. At the

final step (once convergence is assumed to be reached), the energy is computed, this

time using a denser grid g (and therefore, a denser G). The existing program imple-

ments this with several nested loops, as seen in code listing of figure 2. This method

iteration_step, is responsible for computing the Fock-Matrix during the iterative

approach, and the energy at the last step.

def iteration_step(input/output: fock_matrix, input/output: e, last_step)

for each i in atoms do

for each j in shells(i) do

for each k in grid g do

p = compute_grid_point(i, j, k) // p∈G

Fs = compute_functions(p, fock_matrix)

d = compute_density(p, Fs, fock_matrix)

if (last_step) then e += energy(Fs, d, fock_matrix)

else update_fock_matrix(Fs, d, fock_matrix) end

end

end

end

end

Figure 2. Pseudo-code for the algorithm to be replaced for GPU

def update_fock_matrix(Fs, d, fock_matrix)

for each Fi in Fs do

for each Fj in Fs do

fock_matrix[i][j] += compute_fock_matrix_element(Fi, Fj, d)

end

end

end

Figure 3. Pseudo-code for the update_fock_matrix method
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The temporal complexity of this algorithm is O(n2m), where n is the number of

basis-functions (the size of the Fs array) and m the number of grid-points in G. The

dimension of the Fock-Matrix is n2. The grid g used during convergence has 116 points,

and 194 at the last step. The number of layers is generally 35/40 (depending on the

atomic number of each atom).

The code that will be reimplemented on the GPU corresponds to the iteration_step

method (although it will be implemented by two separate kernels, as described in the

next section). The original programs spends the majority of the total run-time executing

this portion of code (figure 4).

operation % of total run-time
Exchange-Correlation 97.3
Coulomb Integral 0.8

Other 1.9

Figure 4. Percentage of time spent by the execution of the most significant portions of the

computation (measured during a 12 H2O water cluster LDA computation)

3.2 Reimplementation on the GPU

In a naïve approach, we could just write a kernel that implements the actual code

inside the innermost for of the iteration_step method, and launch this over a grid of

threads defined for every (i, j , k). That is, each thread would be computing a single iter-

ation of the three loops. Afterwards, all threads would need to add their results

together. This idea poses various problems.

The first problem is a consequence of the lack of global synchronization on this archi-

tecture. In other words, results from arbitrary threads can’t be added together to get a

global final result. The only possibility is to get partial intermediate results for every

block of threads, since these can intercommunicate and add their results together. After-

wards, this group of intermediate results can be again reduced in the same manner, until

a final value is computed.

Another issue involved in a GPU accumulation-scheme is that all of the operations

(in this case, addition) would be performed on single-precision. As explained before, in

this type of application, precision is something that needs to be taken into account.

The third problem which arises is the need of each thread to have each own memory

space to store its partial results (for example, we would need n2 floats for every Fock-
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Matrix of every thread). In other words, we would be translating the temporal com-

plexity into spatial complexity.

Because of these reasons, we decided to: (a) simply store the intermediate results of

each thread, and then add them on the CPU; (b) separate the code into two distinct

kernels. With (a) we now have double-precision addition and we also avoid the need of

global synchronization or an iterative reduction algorithm as described before. Decision

(b), as we will see, avoids requiring massive amounts of memory.

def energy_kernel(input/output: e, input/output: Fs, last_step)

i,k = threadId.x,threadIdx.y

for each j in shells(i) do

p = compute_grid_point(i,j,k)

Fs[i][j][k] = compute_functions(p, fock_matrix)

d[i][j][k] = compute_density(p, Fs[i][j][k], fock_matrix)

if (last_step) then e[i,j,k] = energy(Fs[i][j][k], d, fock_matrix) end

end

end

Figure 5. First kernel , responsible of computing and storing the

basis-functions and energy, for each grid point

def fock_matrix_kernel(fock_matrix, Fs, d)

fi,fj = threadId.x, threadId.y

shared_Fi[blockSize], shared_Fj[blockSize]

fock_matrix[fi][fj] = 0

for each i in atoms do

for each j in shells(i) do

for each k in grid do

p = compute_grid_point(i,j,k)

syncthreads()

if (threadIdx.y == 0) then shared_Fi[fi] = Fs[i][j][k][fi] end

if (threadIdx.x == 0) then shared_Fj[fj] = Fs[i][j][k][fj] end

syncthreads()

fock_matrix[fi][fj] += compute_fock_matrix_element(shared_Fi[fi],

shared_Fj[fj],

d[i][j][k])

end

end

end

end

Figure 6. Fock-Matrix updating kernel
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So, the first kernel (figure 5) computes the basis functions and density (or energy)

for each valid (i, j , k) combination. The second kernel (figure 6) is in charge of com-

puting the Fock-Matrix . The main difference compared to the serial version, is that the

loops are inverted , to avoid the memory issue mentioned before. This inversion consists

of writing this second kernel so that each thread computes an element of the Fock-

Matrix , by going trough every (i, j , p) and reads the necessary parameters computed by

the first kernel. This approach eliminates the need of requiring one intermediate Fock-

Matrix per thread (to be later accumulated).

Because of decision (a), we now have a tri-dimensional array (or matrix) corre-

sponding to e (the energy computed at each point of the grid). This matrix’s elements

will be accumulated to a single final value on the CPU. This way of storing per-thread

values is also needed to communicate partial values between kernels (Fs and d arrays).

In fock_matrix_kernel it can be seen how shared memory was used to load the func-

tion values that two threads would be reading in common. To compute Focki,j, function

values Fi and Fj are required. This means that to compute Focki,k and Fockl,j, func-

tions Fi and Fj will be required, respectively, for every k, l. Therefore, the shared arrays

shared_Fi and shared_Fj are first loaded with all function values that are to be used

by all the threads in this block.

The grid of threads for the first kernel was defined in blocks of 128 threads, and the

second one, in blocks of 256 threads.

Determining how to parallelize (ie: how to define the grid and blocks) is not trivial,

since it involves thinking kernel code from a different perspective. Also, to parallelize

more implies less work per-kernel and more memory used for intermediate results

between successive kernel calls (since threads can’t communicate globally). The per-

kernel work was a factor considered when defining the first kernel, since completely par-

allelizing all loops was slower than just doing two of them. Therefore, the kernel actu-

ally includes one of the for loops in its code, while the other two are replaced by the bi-

dimensional grid of threads that execute it.

Also, since the original program was programmed completely using double-precision

due to the importance of the quality of intermediate results, the use of single-precision

was a factor to take into consideration. The main problem is that these results span a

wide range of values, which introduces accumulation errors for example. In any case,

CUDA is almost in complete compliance with the IEEE754 floating point standard. The

biggest difference with the floating point processor (or FPU) of the CPU, is that the

GPU uses strictly 32bit data-types for single-precision operations instead of having

intermediate registers with higher precision.
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4 Results

We’ve tested the implementation by comparing both the GPU and CPU versions of

the program, applying the computation to different input systems. We present the total

run-time of the simulation and the differences in the final energy value computed

between both program versions (absolute and relative error) in tables 7 and 8. On table

10, we show the time spent by the GPU and CPU on the portion of the code in ques-

tion, next to the factor of acceleration.

The absolute (△E) and relative error (|△E/Ecpu|) of the final energy values (equa-

tion 1), obtained by comparing the values of the CPU and GPU versions of the code, are

a measure of the quality of the results in terms of simulation accuracy. The total run-

time is measured from simulation start to end.

Input System △E [kcal/mol] |△E/Ecpu| Tgpu [s] Tcpu [s]
Tcpu

Tgpu

CH4 0.0010 4.03× 10−8 3.45 6.43 1.81

C2H8 0.0017 3.52× 10−8 6.32 21.48 3.40

C3H8 0.0027 3.66× 10−8 15.74 52.86 3.29

C4H10 0.0035 3.65× 10−8 24.21 106.16 4.38

C5H12 0.0055 4.56× 10−8 47.55 182.55 3.84

C7H16 0.0124 7.33× 10−8 72.90 289.12 3.97

C9H20 0.0101 4.65× 10−8 172.99 745.83 4.31

C13H28 0.0191 6.07× 10−8 1206.15 5840.91 4.84

Figure 7. Results for alcane series (total simulation time and quality of results)

Input System △E [kcal/mol] |△E/Ecpu| Tgpu [s] Tcpu [s]
Tcpu

Tgpu

H2O 0.0028 5.89× 10−8 2.35 2.21 0.94

(H2O)2 0.0024 2.56× 10−8 4.52 9.21 2.04

(H2O)3 0.0048 3.38× 10−8 8.3 25.23 3.04

(H2O)4 0.0041 2.18× 10−8 17.77 54.53 3.07

(H2O)5 0.0019 8.18× 10−9 26.2 98.42 3.76

(H2O)6 0.0039 1.38× 10−8 39.5 162.84 4.12

(H2O)7 0.0034 1.03× 10−8 69.04 252.46 3.66

(H2O)8 0.0042 1.12× 10−8 90.33 371.40 4.11

(H2O)9 0.0032 7.45× 10−9 123.94 529.25 4.27

(H2O)10 0.0053 1.12× 10−8 181.08 735.70 4.06

(H2O)11 0.0119 2.30× 10−8 230.45 957.27 4.15

(H2O)12 0.0023 4.15× 10−9 298.32 1352.62 4.53

Figure 8. Results of water cluster series (total simulation time and quality of results)
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Figure 9. Results of water cluster series (total runtime of simulation)

Tgpu [ms] Tcpu [ms]
Tcpu

Tgpu

H2O 33.71 40.39 1.2
(H2O)2 76.1 173.66 2.28

(H2O)3 145.95 499.45 3.42
(H2O)4 327.2 1061.32 3.24

(H2O)5 484.6 1958.75 4.04
(H2O)6 726.9 3236.98 4.45

(H2O)7 1325.18 5148.9 3.89
(H2O)8 1730.16 7594.89 4.69
(H2O)9 2335.16 10824.81 4.64

(H2O)10 3388.5 16097.94 4.75
(H2O)11 4448.49 20492.17 4.61

(H2O)12 5589.94 26696.37 4.78

Figure 10. Time spent on the exchange-correlation subroutine

We’ve also run geometry optimizations, which seek to find a better geometry of the

atoms in space, by minimizing energy at each geometry. Results are seen in figure 11.

RMSD corresponds to the Root Mean Square Deviation computed between the last

geometries returned by GPU and CPU (the difference of the final geometries deter-

mined, measured in Angstrom). While this value is proportional to the input system

size, it serves to show the quality of the results thrown by the GPU version of the code.
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RMSD [Ȧ] Tgpu [s] Tcpu [s]
Tcpu

Tgpu

C5H12 3.99× 10−5 190.05 712.52 3.75

C9H20 1.33× 10−2 466.59 1632.95 3.49

C13H28 6.48× 10−3 1714.97 5331.87 3.10

(H2O)9 2.3× 10−4 889.22 3577.13 4.02

(H2O)12 1.8× 10−4 1405.82 5526.45 3.93

Fe(CN)5N2

−3 2.1× 10−3 1179.17 3459.00 2.93

Fe(CN)5N2C4H9

−2 1.25× 10−2 3612.94 14633.18 4.05

Figure 11. Geometry optimization results

5 Conclusion

We can see that in the case of the code implemented on the GPU, the total runtime

of the simulation achieved speedups of up to approximately five times, compared to the

CPU version. While this speedup is considerable (specially taking into account the long

runtime of these simulations), the code could possibly be optimized. Memory usage is

quite high, which limits the size of the input system.

The quality of the results is more than acceptable, since what matters is the absolute

error, in terms of simulation accuracy. In all cases, this value is less that 0.02 kcal/mol.

This ensures that values computed by the simulation can actually be used as a replace-

ment of the results returned by the CPU version. It is possible that significant improve-

ments could only be reached by using double-precision, already present in the next-gen-

eration GPUs.

In terms of concrete applications, an important conclusion of this work, is that the

quality of the results is a motivating factor to port further parts of the simulation pro-

gram and perform molecular dynamics methods describing at least a part of the system

at the quantum level. In general, we have showed how useful GPUs can be in computer

simulation, since these systems tend to have the necessary properties, like high data-par-

allelism, to be successfully parallelized in hardware.
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